DEEPSAM (Diffusion Equation Evolutionary Programming Simulated Annealing Method) A NEW HYBRID EVOLUTIONARY ALGORITHM FOR FINDING THE LOWEST MINIMA OF POTENTIAL SURFACES: APPROACH AND APPLICATIONS
نویسندگان
چکیده
منابع مشابه
A Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملA Novel Hybrid Evolutionary Algorithm for Multi-modal Function Optimization and Engineering Applications
This paper presents a novel hybrid evolutionary algorithm that combines Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithms. When a local optimal solution is reached with PSO, all particles gather around it, and escaping from this local optima becomes difficult . To avoid premature convergence of PSO, we present a new hybrid evolutionary algorithm, called PSOSA, based on t...
متن کاملHybrid Evolutionary And Annealing Algorithms For Nonlinear Discrete Constrained Optimization
This paper presents a procedural framework that unifies various mechanisms to look for discrete-neighborhood saddle points in solving discrete constrained optimization problems (DCOPs). Our approach is based on the necessary and sufficient condition on local optimality in discrete space, which shows the one-to-one correspondence between the discrete-space constrained local minima of a problem a...
متن کاملEvolutionary design automation for control systems with practical constraints
The aim of this work is to explore the potential and to enhance the capability of evolutionary computation in the development of novel and advanced methodologies that enable control system structural optimisation and design automation for practical applications. Current design and optimisation methods adopted in control systems engineering are in essence based upon conventional numerical techni...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کامل